Internal block of human heart sodium channels by symmetrical tetra- alkylammoniums

نویسندگان

  • M E O'Leary
  • R Horn
چکیده

The human heart Na channel (hH1) was expressed by transient transfection in tsA201 cells, and we examined the block of Na current by a series of symmetrical tetra-alkylammonium cations: tetramethylammonium (TMA), tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA). Internal TEA and TBA reduce single-channel current amplitudes while having little effect on single channel open times. The reduction in current amplitude is greater at more depolarized membrane potentials. Analysis of the voltage-dependence of single-channel current block indicates that TEA, TPrA and TBA traverse a fraction of 0.39, 0.52, and 0.46 of the membrane electric field to reach their binding sites. Rank potency determined from single-channel experiments indicates that block increases with the lengths of the alkyl side chains (TBA > TPrA > TEA > TMA). Internal TMA, TEA, TPrA, and TBA also reduce whole-cell Na currents in a voltage-dependent fashion with increasing block at more depolarized voltages, consistent with each compound binding to a site at a fractional distance of 0.43 within the membrane electric field. The correspondence between the voltage dependence of the block of single-channel and macroscopic currents indicates that the blockers do not distinguish open from closed channels. In support of this idea TPrA has no effect on deactivation kinetics, and therefore does not interfere with the closing of the activation gates. At concentrations that substantially reduce Na channel currents, TMA, TEA, and TPrA do not alter the rate of macroscopic current inactivation over a wide range of voltages (-50 to +80 mV). Our data suggest that TMA, TEA, and TPrA bind to a common site deep within the pore and block ion transport by a fast-block mechanism without affecting either activation or inactivation. By contrast, internal TBA and TPeA increase the apparent rate of inactivation of macroscopic currents, suggestive of a block with slower kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permeation of Large Tetra-Alkylammonium Cations through Mutant and Wild-Type Voltage-Gated Sodium Channels as Revealed by Relief of Block at High Voltage

Many large organic cations are potent blockers of K(+) channels and other cation-selective channels belonging to the P-region superfamily. However, the mechanism by which large hydrophobic cations enter and exit the narrow pores of these proteins is obscure. Previous work has shown that a conserved Lys residue in the DEKA locus of voltage-gated Na(+) channels is an important determinant of Na(+...

متن کامل

Evidence for a direct interaction between internal tetra-alkylammonium cations and the inactivation gate of cardiac sodium channels

The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depola...

متن کامل

Pharmacological modification of sodium channels from the human heart atrium in planar lipid bilayers: electrophysiological characterization of responses to batrachotoxin and pentobarbital.

BACKGROUND AND OBJECTIVE To investigate the effects of barbiturates on batrachotoxin-modified sodium channels from different regions of the human heart. Single sodium channels from human atria were studied and compared with existing data from the human ventricle and from the central nervous system. METHODS Sodium channels from preparations of human atrial muscle were incorporated into planar ...

متن کامل

A critical residue for isoform difference in tetrodotoxin affinity is a molecular determinant of the external access path for local anesthetics in the cardiac sodium channel.

Membrane-impermeant quaternary derivatives of lidocaine (QX222 and QX314) block cardiac Na(+) channels when applied from either side of the membrane, but they block neuronal and skeletal muscle channels poorly from the outside. To find the molecular determinants of the cardiac external QX access path, mutations of adult rat skeletal muscle (micro1) and rat heart (rH1) Na(+) channels were studie...

متن کامل

Structural basis of differences in isoform-specific gating and lidocaine block between cardiac and skeletal muscle sodium channels.

Voltage-gated Na(+) channels underlie rapid conduction in heart and skeletal muscle. Cardiac sodium channels open and close over more negative potentials than do skeletal muscle sodium channels; heart channels are also more sensitive to lidocaine block. The structural basis of these differences is poorly understood. We mutated nine isoform-specific micro1 (rat skeletal muscle) channel residues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1994